
G	uesti	on	Answer	Mark	Guidance
1	(a)		 monomers join/bond/add/react/form polymer/form chain AND another product/small molecule e.g. H₂O/HCI ✓ QWC must spell AND use 'monomer(s)' correctly throughout 	1	IGNORE 'two' when referring to monomers, ie (two) monomers
	(b)	(i)	$H = 0 \qquad H = $	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW benzene ring for C ₆ H ₅ 'End bonds' MUST be shown (do not have to be dotted) ALLOW one or more repeat units but has to have a whole number of repeat units (<i>ie</i> does not have to be two) For ester, DO NOT ALLOW $- \circ - \circ - \circ - \circ$ ALLOW structure with no O at left end and COO at right end IGNORE brackets IGNORE brackets IGNORE n
		(ii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	 ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW one or more repeat units but has to have a whole number of repeat units (<i>ie</i> does not have to be two) 'End bonds' MUST be shown (do not have to be dotted) IGNORE brackets IGNORE n

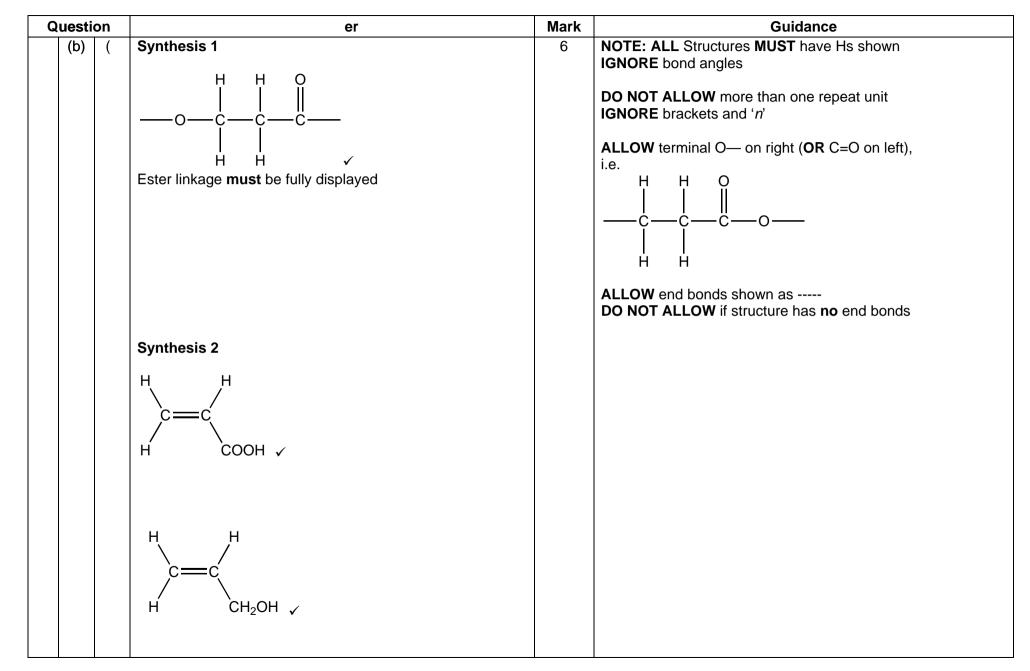
Question	Answer	Mark	Guidance
(c)	compound C H C=C CH ₃ COOH√		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW CH ₂ C(CH ₃)COOH
	compound D and compound E $H = \begin{pmatrix} H & CH_3 \\ H & H \\ C & C \\ H & OH \end{pmatrix} + \begin{pmatrix} H & CH_3 \\ H & H \\ C & C \\ H & OH \end{pmatrix} + \begin{pmatrix} H & CH_3 \\ H & H \\ C & C \\ H & COH \end{pmatrix} + \begin{pmatrix} H & CH_3 \\ H & H \\ C & C \\ H & COH \end{pmatrix} + \begin{pmatrix} H & CH_3 \\ H & H \\ C & C \\ H & COH \end{pmatrix} + \begin{pmatrix} H & CH_3 \\ H & H \\ C & C \\ H & COH \end{pmatrix} + \begin{pmatrix} H & CH_3 \\ H & H \\ C & C \\ H & COH \end{pmatrix} + \begin{pmatrix} H & CH_3 \\ H & H \\ H & C \\$	3	ALLOW D and E by ECF from an incorrect structure of C provided that C contains a double bond and molecular formulae of D and E is $C_4H_8O_3$ with H_2O added across double bond
(d) (i		1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) e.g. (CH ₃) ₂ CHOH DO NOT ALLOW –HO IGNORE working (<i>ie</i> other structures) provided correct structure of propan-2-ol is shown IGNORE name (even if wrong)

Question	er	Mark	Guidance
(d) (i	OR acid anhydride:	1	 ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) OR (2-)methylpropanoic acid DO NOT ALLOW incorrect name (will CON a correct structure) ALLOW acyl chloride: (CH₃)₂CHCOCI IGNORE working provided correct structure of propan-2-ol is shown
	 Hydrogen bonds form with water ✓ Note: Can be shown in diagram as dashed line, <i>ie</i> (no label required) DO NOT CON 'hydrogen bond' from an incorrect hydrogen bond in diagram Mandelic acid forms more hydrogen bonds (with water) ✓ ORA Mandelic acid has an extra OH OR 2 OH groups OR has a COOH group ✓ ORA 	3	 ANNOTATIONS MUST BE USED ALLOW a diagram showing hydrogen bonds with water, dipole and lone pair are not required ALLOW a hydrogen bond to C=O, ie C=OH–O IGNORE bond angles Diagram does not need to show all of mandelic acid (IGNORE if wrong) ALLOW any comparison of numbers of hydrogen bonds provided that mandelic acid has more hydrogen bonds DO NOT ALLOW 'NO –OH groups in ester (as there are)' DO NOT ALLOW reference to –OH⁻ / hydroxide IGNORE reference to carbon chain and van der Waals' forces Note: If a response compares Ester 1 with Ester 2 rather than with mandelic acid, maximum of 2 marks: 1st mark hydrogen bonds OR Ester 2 forms more hydrogen bonds

Question	Answer	Mark	Guidance
(d) (iv)	To test for (adverse) side effects OR to test toxicity OR to test for irritation ✓	1	 ALLOW a stated adverse side effect, eg allergy, carcinogenic, etc IGNORE references to optical isomers, chirality, etc IGNORE vague statements such as harmful to skin, dangerous to skin, corrosive to skin, reacts with skin ALLOW company liable to litigation/damages
	Total	13	

2	Equations $CH_3COCHO + 4[H] \longrightarrow CH_3CHOHCH_2OH \checkmark$ $CH_3COCHO + [O] \longrightarrow CH_3COCOOH \checkmark$ Reduction reagents and observation Methylglyoxal is reduced by NaBH ₄ ✓ Oxidation reagents and observation Methylglyoxal is oxidised by H ₂ SO ₄ AND K ₂ Cr ₂ O ₇ ✓ Observation: turns green OR blue ✓ OR Methylglyoxal is oxidised by Tollens' reagent ✓ Observation: Silver (mirror) ✓	ANNOTATIONS MUST BE USED Throughout question, ALLOW correct structural OR displayed OR skeletal formula DO NOT ALLOW molecular formulae ALLOW partial reduction (ie reduction of either C=O group) [H] implies reduct [O] implies oxidat 1 reduced AND reagent are both required for the mark ALLOW link to equation with [H] for reduction 1 ALLOW any recognisable attempt at name IGNORE any reference to acids oxidised AND reagent are both required for the mark ALLOW link to equation with [O] for oxidation ALLOW link to equation with [O] for oxidation ALLOW Na2Cr2O7 instead of K2Cr2O7 ALLOW H* AND Cr2O7 ²⁻ OR H* AND CrO4 ²⁻ If name given, ALLOW dichromate OR dichromate(VI) ALLOW acidified dichromate ALLOW asidified dichromate ALLOW asidified by manganate Observation: decolourised
	Total	Note: If one reaction is identified as oxidation, assume the other is reduction (and vice versa) 5

Question	Expected Answers	Marks	Additional Guidance
b i	C ₇ H ₅ O ₂	1	ALLOW any order of elements ALLOW $C_{14}H_{10}O_4 \rightarrow C_7H_5O_2$ or $C_{14}H_{10}O_4 = C_7H_5O_2$
ii	$HO - CH_2 - CH_2 - OH$	2	ALLOW COOH/CO ₂ H ALLOW
			ALLOW HO(CH ₂) ₂ OH
C i	HO O (Na ⁺) O ✓ ✓	2	ALLOW any of the following for 1 mark $HO \longrightarrow O^{O} O^$
ii	 (PGA is) (<u>bio)degradable</u> OR <u>photodegradable</u> OR <u>hydrolysed</u> (but hydrocarbon based polymers are non-biodegradable) ✓ One of (bio)degradable OR photodegradable OR hydrolysed must be spelt correctly – if one spelt correctly and another incorrectly spelt – ALLOW mark 	1	 ALLOW broken down by <u>bacteria</u> (must be spelt correctly) ALLOW degrade as alternative to degradable ALLOW undergoes hydrolysis as alternative to hydrolysed IGNORE any additional information if the additional information is correct e.g. biodegradable and doesn't produce toxic gases DO NOT ALLOW any additional information if the additional information is incorrect e.g. biodegradable and can be recycled
	Total	9	


Qı	Question		Expected Answers		Marks	Additional Guidance		
4	a		Alternative Tollens' test AND 'silver precipitate/mirror' ✓ is the aldehyde ✓ react with 2,4-DNP(H) and 'orange precipitate' ✓ must be the ketone ✓ 2,4-DNP(H) AND orange precipitate ✓ is either aldehyde OR ketone ALLOW carbonyl OR C=O√ Tollens' test & 'silver ppt/mirror' ✓ is the aldehyde ✓	 approaches Tollens' test AND 'silver precipitate/mirror' ✓ is the aldehyde ✓ react with carbonate/ hydrogencarbonate/ hydrogencarbonate/ bubbles/ effervesces/ gas evolved ✓ must be the (carboxylic) acid ✓ 2,4-DNP(H) and no orange precipitate ✓ is the (carboxylic) acid ✓ Tollens' test & 'silver ppt/mirror' ✓ is the aldehyde ✓ 	4	 ALLOW ammoniacal AgNO₃/ Ag⁺(NH₃)₂ / Ag⁺(NH₃) ALLOW acidified dichromate OR Fehlings as an alternative to Tollens – observation 'turn green' OR 'red precipitate' respectively ALLOW acidified manganagate(VII) and observation as either brown precipitate/decolourised/pale pink ALLOW Brady's (reagent) ALLOW orange/red/yellow for colour of the 2,4-DNP(H) precipitate ALLOW solid/crystals in place of precipitate IGNORE any reference to melting points ALLOW PCI₅ as a test for the acid – observation would be 'white fumes (of HCI)' ALLOW detection of (carboxylic) acid by reacting with an alcohol to make an ester but no mark for the observation. DO NOT ALLOW detection of (carboxylic) acid by pH or indicator Please annotate, use ticks to show where marks are awarded 		
	b		Peak in range 2500–3300 shows O–H ✓ [need wavenumber (or ran		1	DO NOT ALLOW single peak quoted within range 2500–3300 other than 3000 (cm ⁻¹) for OH DO NOT ALLOW range 3200–3550 (cm ⁻¹) IGNORE any reference to C-O or C=O		

Questic	on	Expected Answers		Marks	Additional Guidance
C		C is bonded to only 1H OR (relative) peak area C is bonded (relative)	indicates adjacent nded to only 1H√		ALLOW 3-methylbutanal , any correct unambiguous structure ALLOW two marks for correct aldehyde with no explanation ALLOW doublet/peak at 0.9ppm due to R–CH ALLOW the splitting shows adjacent to CH/environment that contains 1 H/proton
		same environment) \checkmark same environment) \checkmark same environment) \checkmark lf aldehyde is correct only if aldehyde is correct only if aldeh	yde is incorrect xplain both doublet		ALLOW 6 Hs/ protons in same environment DO NOT ALLOW 6 Hs in same environment next to CHO e.g. $H_3C - \bigcup_{CH_3}^{H} \bigcup_{H}^{O}$ would score two marks if the doublet and the peak areas were correctly explained
d	i	$H_{3}C - CH_{2} - C - CH_{2} - CH_{3}$ ketone 3	~	1	ALLOW displayed/skeletal formulae
	ii	There are 4 (different C) environment (therefore) it is ketone 2 / H_3C — CH — C — CH ₃ \downarrow CH ₃ \checkmark	ts ✓	3	ALLOW 2 Cs are in same environment/equivalent ALLOW 3-methylbutan(-2-)one/ any correct unambiguous structure ALLOW 2-methylbutan-3-one
		(C responsible for peak at δ = 210 pp C=O/carbonyl carbon \checkmark	om) is Total	12	c

Qu	esti	on	Expected Answers	Marks	Additional Guidance
5	а	i	The time (from the injection of the sample) for the component to leave the column \checkmark	1	ALLOW time from injection to detection ALLOW time spent in column ALLOW time taken to reach detector
		ii	They have similar retention times ✓	1	ALLOW both are esters therefore partition/adsorption/retention times will be very similar ALLOW ECF if they describe <i>R</i> _f values in part a(i) ALLOW same retention times
		iii	Butylbutanoate ✓	1	ALLOW butyl butanoate ALLOW but-1-yl butanoate DO NOT ALLOW butanyl butanoate
	b	i	hydrocarbon chain must be correct for one mark H H H H H H H H H H	2	ALLOW any correct unambiguous structure/ $CH_3(CH_2)_4CHCHCHCHCOOCH_2CH_3 / CH_3(CH_2)_4CHCHCHCHCOOC_2H_5$ $CH_3(CH_2)_4(CH)_4COOCH_2CH_3$ DO NOT ALLOW $C_5H_{11}CHCHCHCHCHCOOCH_2CH_3$ etc ALLOW CO_2 for ester ALLOW 1 mark for correct 2,4-decadiene structure e. ALLOW 1 mark for correct ethyl oate structure e. or $-CO_2C_2H_5$ or $-COOC_2H_5$

Question	Expected Answers	Marks	Additional Guidance
ii	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	ALLOW $H_2C = 0$ $H_2C = 0$
if either phenylethanoi acid or 2- phenyethanol not prepared - automatically lose two mark	 5. react phenylethanoic acid with 2-phenylethanol. If both already correctly named ALLOW acid and alcoholy. 	7	 ALLOW H⁺ & Cr₂O₇²⁻ or H₂SO₄/Na ₂Cr₂O₇ - any other oxidising agent or other named acid – please consult with TL ALLOW LiAlH₄ as alternative to NaBH₄ phenylethanoic acid & phenylethanol must be unambiguously identified by either name or formula DO NOT ALLOW or oxidised to form(a carboxylic) acid or reduced to form alcohol for marks 2 and 4 ALLOW conc H₂SO₄ DO NOT ALLOW dilute or H₂SO₄(aq) DO NOT ALLOW HCl, HNO₃ Please annotate, use ticks to show where marks are awarded
	Total	13	

Q	uesti	on	er	Mark	Guidance
6	(a)	(i)	One mark is for positive carbonyl test (Add) 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate ✓		ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
			One mark is for negative aldehyde test EITHER (Add) Tollens' reagent/Tollens' test AND no change OR no reaction OR no silver (mirror)		 ALLOW AgNO₃/NH₃ (Formulae must be correct) OR ammoniacal silver nitrate ALLOW Fehling's solution OR Benedict's solution AND no (brick-red) precipitate ALLOW any response that implies that nothing happens ie no change OR no reaction OR no silver (mirror)
			OR (Add) H₂SO₄ AND K₂Cr₂O7 AND no change OR no reaction OR no green colour ✓	2	 ALLOW 'the aldehyde/pentanal gives a silver mirror' ALLOW H⁺ AND Cr₂O₇²⁻ (Formulae must be correct) ALLOW any response that implies that nothing happens IGNORE responses using NaBH₄ (as no observations)
		(ii)	 1st mark Take melting point of orange crystals/derivative/product from 2,4-DNP ✓ 2nd mark Compare melting point with known values OR compare melting point with value in database/reference book ✓ 	2	NOTE: a(ii) is marked completely independently of a(i) Mark independently of response for 1st mark DO NOT ALLOW 1st or 2nd marks for taking and comparing boiling points OR chromatograms

Question	er	Mark	Guidance
	Synthesis 3 0 H O H O H H H O H O H H H H H O H H H H H H HO C C C C O H H H H H ✓ ✓ ✓ ✓ ✓		Mark each structure independently HO– must be connected correctly on BOTH structures
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		DO NOT ALLOW more repeat units IGNORE brackets and 'n' ALLOW terminal O— on right (OR C=O on left), i. $\begin{array}{c c c c c c c c c c c c c c c c c c c $
(b) (i	Synthesis 1: condensation AND Synthesis 2: addition AND Synthesis 3: condensation ✓	1	All three correct responses required for the mark
	Total	11	